博客
关于我
a^b
阅读量:414 次
发布时间:2019-03-06

本文共 909 字,大约阅读时间需要 3 分钟。

为了求解 a 的 b 次方对 p 取模的值,我们可以采用快速幂算法。这种方法通过将指数 b 分解为二进制形式,逐步处理每一位,利用模运算来优化计算过程,从而将时间复杂度降低到 O(log b)。以下是详细的步骤:

方法思路

  • 初始化结果变量:将结果变量 res 初始化为 1。
  • 处理每一位二进制位:从最低位开始,逐步处理 b 的每一位。
  • 检查当前位是否为1:如果当前位是1,则将结果乘以当前的 a,并对 p 取模。
  • 更新 a 的值:将 a 平方并对 p 取模,以处理更高的幂次。
  • 右移处理位数:将 b 的最低位移出处理,继续处理下一位。
  • 这种方法确保了每一步的计算都是高效的,并且避免了数值溢出的问题。

    解决代码

    #include 
    using namespace std;int main() { int a, b, p; cin >> a >> b >> p; if (p == 1) { cout << 0 << endl; return 0; } int res = 1; while (b > 0) { if (b & 1) { res = (res * a) % p; } a = (a * a) % p; b >>= 1; } cout << res << endl; return 0;}

    代码解释

  • 读取输入:使用 cin 读取输入的三个整数 a, b, p。
  • 特殊情况处理:如果 p 等于1,直接输出0,因为任何数对1取模都是0。
  • 初始化结果变量res 初始化为1,用于存储最终的结果。
  • 循环处理每一位:使用 while 循环处理 b 的每一位。
  • 检查当前位是否为1:使用按位与运算 b & 1 检查当前位是否为1,如果是则更新结果。
  • 更新 a 的值:将 a 平方并对 p 取模,确保数值不溢出。
  • 右移处理位数:将 b 的最低位移出,继续处理下一位。
  • 这种方法高效且准确,能够在对数时间内完成计算,适用于大数幂取模的问题。

    转载地址:http://qktkz.baihongyu.com/

    你可能感兴趣的文章
    Node的Web应用框架Express的简介与搭建HelloWorld
    查看>>
    Node第一天
    查看>>
    node编译程序内存溢出
    查看>>
    Node读取并输出txt文件内容
    查看>>
    node防xss攻击插件
    查看>>
    noi 1996 登山
    查看>>
    noi 7827 质数的和与积
    查看>>
    NOI-1.3-11-计算浮点数相除的余数
    查看>>
    NOI2010 海拔(平面图最大流)
    查看>>
    NOIp2005 过河
    查看>>
    NOIP2011T1 数字反转
    查看>>
    NOIP2014 提高组 Day2——寻找道路
    查看>>
    noip借教室 题解
    查看>>
    NOIP模拟测试19
    查看>>
    NOIp模拟赛二十九
    查看>>
    Vue3+element plus+sortablejs实现table列表拖拽
    查看>>
    Nokia5233手机和我装的几个symbian V5手机软件
    查看>>
    Non-final field ‘code‘ in enum StateEnum‘
    查看>>
    none 和 host 网络的适用场景 - 每天5分钟玩转 Docker 容器技术(31)
    查看>>
    None还可以是函数定义可选参数的一个默认值,设置成默认值时实参在调用该函数时可以不输入与None绑定的元素...
    查看>>