博客
关于我
a^b
阅读量:414 次
发布时间:2019-03-06

本文共 909 字,大约阅读时间需要 3 分钟。

为了求解 a 的 b 次方对 p 取模的值,我们可以采用快速幂算法。这种方法通过将指数 b 分解为二进制形式,逐步处理每一位,利用模运算来优化计算过程,从而将时间复杂度降低到 O(log b)。以下是详细的步骤:

方法思路

  • 初始化结果变量:将结果变量 res 初始化为 1。
  • 处理每一位二进制位:从最低位开始,逐步处理 b 的每一位。
  • 检查当前位是否为1:如果当前位是1,则将结果乘以当前的 a,并对 p 取模。
  • 更新 a 的值:将 a 平方并对 p 取模,以处理更高的幂次。
  • 右移处理位数:将 b 的最低位移出处理,继续处理下一位。
  • 这种方法确保了每一步的计算都是高效的,并且避免了数值溢出的问题。

    解决代码

    #include 
    using namespace std;int main() { int a, b, p; cin >> a >> b >> p; if (p == 1) { cout << 0 << endl; return 0; } int res = 1; while (b > 0) { if (b & 1) { res = (res * a) % p; } a = (a * a) % p; b >>= 1; } cout << res << endl; return 0;}

    代码解释

  • 读取输入:使用 cin 读取输入的三个整数 a, b, p。
  • 特殊情况处理:如果 p 等于1,直接输出0,因为任何数对1取模都是0。
  • 初始化结果变量res 初始化为1,用于存储最终的结果。
  • 循环处理每一位:使用 while 循环处理 b 的每一位。
  • 检查当前位是否为1:使用按位与运算 b & 1 检查当前位是否为1,如果是则更新结果。
  • 更新 a 的值:将 a 平方并对 p 取模,确保数值不溢出。
  • 右移处理位数:将 b 的最低位移出,继续处理下一位。
  • 这种方法高效且准确,能够在对数时间内完成计算,适用于大数幂取模的问题。

    转载地址:http://qktkz.baihongyu.com/

    你可能感兴趣的文章
    OAuth2.0_环境介绍_授权服务和资源服务_Spring Security OAuth2.0认证授权---springcloud工作笔记138
    查看>>
    OAuth2.0_环境搭建_Spring Security OAuth2.0认证授权---springcloud工作笔记139
    查看>>
    oauth2.0协议介绍,核心概念和角色,工作流程,概念和用途
    查看>>
    OAuth2.0四种模式的详解
    查看>>
    OAuth2授权码模式详细流程(一)——站在OAuth2设计者的角度来理解code
    查看>>
    oauth2登录认证之SpringSecurity源码分析
    查看>>
    OAuth2:项目演示-模拟微信授权登录京东
    查看>>
    OA系统多少钱?OA办公系统中的价格选型
    查看>>
    OA系统选型:选择好的工作流引擎
    查看>>
    OA让企业业务流程管理科学有“据”
    查看>>
    OA项目之会议通知(查询&是否参会&反馈详情)
    查看>>
    Vue.js 学习总结(13)—— Vue3 version 计数介绍
    查看>>
    OA项目之我的会议(会议排座&送审)
    查看>>
    OA项目之我的会议(查询)
    查看>>
    OA项目之我的审批(会议查询&会议签字)
    查看>>
    OA项目之项目简介&会议发布
    查看>>
    ObjC的复制操作
    查看>>
    Object c将一个double值转换为时间格式
    查看>>
    object detection之Win10配置
    查看>>
    object detection训练自己数据
    查看>>