博客
关于我
a^b
阅读量:414 次
发布时间:2019-03-06

本文共 909 字,大约阅读时间需要 3 分钟。

为了求解 a 的 b 次方对 p 取模的值,我们可以采用快速幂算法。这种方法通过将指数 b 分解为二进制形式,逐步处理每一位,利用模运算来优化计算过程,从而将时间复杂度降低到 O(log b)。以下是详细的步骤:

方法思路

  • 初始化结果变量:将结果变量 res 初始化为 1。
  • 处理每一位二进制位:从最低位开始,逐步处理 b 的每一位。
  • 检查当前位是否为1:如果当前位是1,则将结果乘以当前的 a,并对 p 取模。
  • 更新 a 的值:将 a 平方并对 p 取模,以处理更高的幂次。
  • 右移处理位数:将 b 的最低位移出处理,继续处理下一位。
  • 这种方法确保了每一步的计算都是高效的,并且避免了数值溢出的问题。

    解决代码

    #include 
    using namespace std;int main() { int a, b, p; cin >> a >> b >> p; if (p == 1) { cout << 0 << endl; return 0; } int res = 1; while (b > 0) { if (b & 1) { res = (res * a) % p; } a = (a * a) % p; b >>= 1; } cout << res << endl; return 0;}

    代码解释

  • 读取输入:使用 cin 读取输入的三个整数 a, b, p。
  • 特殊情况处理:如果 p 等于1,直接输出0,因为任何数对1取模都是0。
  • 初始化结果变量res 初始化为1,用于存储最终的结果。
  • 循环处理每一位:使用 while 循环处理 b 的每一位。
  • 检查当前位是否为1:使用按位与运算 b & 1 检查当前位是否为1,如果是则更新结果。
  • 更新 a 的值:将 a 平方并对 p 取模,确保数值不溢出。
  • 右移处理位数:将 b 的最低位移出,继续处理下一位。
  • 这种方法高效且准确,能够在对数时间内完成计算,适用于大数幂取模的问题。

    转载地址:http://qktkz.baihongyu.com/

    你可能感兴趣的文章
    node安装卸载linux,Linux运维知识之linux 卸载安装node npm
    查看>>
    node安装及配置之windows版
    查看>>
    Node实现小爬虫
    查看>>
    Node提示:error code Z_BUF_ERROR,error error -5,error zlib:unexpected end of file
    查看>>
    Node提示:npm does not support Node.js v12.16.3
    查看>>
    Node搭建静态资源服务器时后缀名与响应头映射关系的Json文件
    查看>>
    Node服务在断开SSH后停止运行解决方案(创建守护进程)
    查看>>
    node模块化
    查看>>
    node模块的本质
    查看>>
    node环境下使用import引入外部文件出错
    查看>>
    node环境:Error listen EADDRINUSE :::3000
    查看>>
    Node的Web应用框架Express的简介与搭建HelloWorld
    查看>>
    Node第一天
    查看>>
    node编译程序内存溢出
    查看>>
    Node读取并输出txt文件内容
    查看>>
    node防xss攻击插件
    查看>>
    noi 1996 登山
    查看>>
    noi 7827 质数的和与积
    查看>>
    NOI-1.3-11-计算浮点数相除的余数
    查看>>
    NOI2010 海拔(平面图最大流)
    查看>>